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Abstract

We present an Analog Neural Network Synthesis
System based on a circuit simulator and a silicon
assembler for neural networks. The circuit simulator
makes use of the fact that neural networks with multilayer
perceptron architecture consist of many decoupled blocks
if the blocks are designed in MOS technology. We
implement on-chip training on the software by
incorporating the Madaline Rule III into our simulator.
The assembler generates the layout by reading the
standard cells from a library once the architecture of the
network is given.

1. Introduction

Neural networks have found many applications in
recent years. Research on neural networks started before
the evolution of powerful computers. Neural networks are
used when there is no algorithmic solution to a problem or
a problem is too complicated to be solved by known
algorithms [1]. Also, neural networks can be used when
the definition of the problem does not exist, but samples
of inputs and corresponding outputs are available.
Applications of neural networks in general can be divided
into two classes: Pattern recognition, and function
approximation [1]. Most of these applications need real
time processing. Neural networks are inherently parallel
processors. When we implement a neural network with
conventional computers, it has to be implemented in a
serial manner. Besides this, the complexity of operations
required in neural networks makes it impossible to use
neural network simulators in many time critical
applications. However, hardware implementations of
neural networks can easily be made parallel. All parts of a
neural network can be implemented in hardware. There
are different approaches to hardware implementations.
These are digital, analog, and mixed signal implemen-
tations. In mixed signal implementations the neural
network is generally realized in analog hardware, whereas
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the inputs and outputs of such implementations are digital
to enable easy interfacing with digital computers [2].

Analog implementations of neural networks have
many advantages such as small size and high speed.
Synapses, which are the most common elements in a
neural network, can be represented at the circuit level by
multipliers. For instance, parallel digital multipliers of
8x8 input word lengths have transistor counts on the order
of at least several thousand [3]. Analog multipliers of
comparable precision use less than 20 transistors. The
speed of an analog multiplier is limited only by its band-
width and can go up to the GHz range. When one looks at
neurons, a similar picture can be seen. Again, an adder
and the nonlinearity can be realized by less than 20
transistors, whereas the same operations require
thousands of transistors in the digital domain [4]-[7].

However, analog neural network implementations
have been rather ad hoc in that very few, if any, have
explored the constraints that circuit non-idealities — like
nonlinear synapses [8,9], neurons that deviate from ideal
functions, or errors and limitations in storing weights [10]
— bring about. It has been shown in [8] and [9] that
multiplier nonlinearity can be a very severe problem even
for nonlinearity factors of less than 10% for many
applications. Limited precision in storing weights has also
proven to be a crucial problem in analog neural network
design. The work in this area has been mostly limited to
predicting these effects either through simulation or
through theoretical analysis and developing some
methods to overcome these problems partially. In [9], the
effects of some non-idealities have been studied through
circuit simulation with SPICE and the importance of
circuit level simulation in analog neural network design
has been demonstrated.

Although SPICE is the standard tool for circuit
simulation, it is not specially tailored for simulating
neural networks. Neural networks consist of the
interconnection of many identical blocks so that
partitioning the network during simulation will increase
the simulation speed tremendously.

Different approaches are used to obtain the weights of
an analog neural network which also dictate -the



implementation style and the architecture of the network
[1]. These approaches are;

¢ Non-learning network: In this method, the weights
are hardwired through the implementation of the fixed
gain multiplier. In this case, the weights to be hardwired
must be calculated before the operation of the neural
network. The calculations are done on a computer which
uses the model of the analog neural network. The
performance of this method depends heavily on the
matching between the model and the real circuit, which is
a task that is very difficult to achieve.

o  Neural-networks in analog hardware implementation
with externally adjustable weight construction: For this
realization, the weights are again computed on a host
computer and downloaded to the chip. Then, the weights
are fine tuned. The chip is used for forward pass, host
computer is used for feedback (weight adaptation). By this
way, the matching of the model and analog hardware is
considerably increased.

o Neural network with on-chip learning: In this
scheme, both the feedforward structure and all circuitry
required to adapt the weights are realized on the chip. A
major disadvantage of this approach and the previous one
is that they both require additional hardware which is
used only at the training stage.

One commercial implementation of analog neural
networks is the ETANN 80170NX chip {5]. This chip has
been plagued by limited resolution in storing the synapse
weights in that the long time resolution of the weights is
not more than five bits. Implementing Madaline Rule III
[11] has been suggested for the ETANN chip; however,
this requires a host computer and excessive external
hardware besides many timing problems which limit the
performance of training. Problems like these have
prevented the success of this chip in the market so that
commercial applications using this chip and similar ones
have been very few.

Outline of the paper is as follows. Section 2 introduces
the Analog Neural Network Simulation System (ANNSiS)
which is based on circuit partitioning techniques. This
simulation system is used to simulate neural networks
composed of the building blocks discussed in section 3.
SAFANN (Silicon Assembler For Analog Neural
Networks) is examined in section 4. Training using
Madaline Rule IIT on ANNSyS is proposed in section 5
whereas section 6 concludes the paper.

2. Analog Neural Network Simulation System
(ANNSIS)

Most of the neural networks used for pattern
recognition or function approximation applications are of
the multi-layer perceptron structure. Determination of the
weights is performed prior to operation, at the learning
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phase, which in general, requires the adaptation of
weights iteratively to reduce the error (distance between
the actual output and the desired output of the network) to
zero. Different algorithms can be applied during the
learning phase. The most commonly used and well known
algorithm is the backpropagation algorithm [11].

Feedforward multilayer neural networks are regular
structures where every neuron is connected to every other
neuron in the previous layer through synapses. Therefore,
they yield themselves easily to partitioning and automatic
netlist generation.

Analog neural networks are specially designed to be
used in real time applications. The speed of analog neural
networks is a very important issue during the design
process. However, the feedforward structure and the
regularity of the neural network allows the determination
of the overall speed of the network easily. If the building
blocks of the neural network are designed carefully to give
a fast response, the overall structure is assured to fulfill
the desired response time. This means that, for most
applications, the DC transfer characteristics of the neural
networks will be the important issue for the designer.
Therefore, DC analysis will be sufficient for most cases. A
simulator designed specifically for this purpose can be
applicable to analog neural networks.

The most commonly used tool for circuit simulation is
SPICE. However, the size of a neural network circuit for a
practical example is very large to be simulated with
SPICE. The simulation time of SPICE for neural network
circuits increases almost quadratically with the circuit
size. Besides, when the circuit size is increased beyond a
limit, SPICE starts to have difficulties in simulating the
network. This problem can be solved by using partitioning
techniques. For DC analysis, if the layers are completely
decoupled, by which we mean that the outputs of the
neurons are not loaded by the inputs of the synapses of the
next layer, the circuit can be partitioned into decoupled
blocks which can be simulated separately starting from
the input layer. Most of the mneural network
implementations use CMOS technology. Considering this
technology, the assumption of being completely decoupled
holds and allows us to partition the network.

ANNSIS is initiated by simulating all partitions in the
first layer and finding the outputs. The output values of
the first layer are then applied to the next layer as
independent voltage sources being input to the synapses of
the neurons in that layer. This way, the input is
propagated to the output.

We first created different sized analog neural network
structures and simulated them without partitioning. Next,
we simulated them by partitioning into blocks which
consist of a neuron and all synapses connected to that
neuron. Simulation results of SPICE2G6 and ANNSIS are
compared for accuracy and found out to be exactly
matching. Table 1 shows the sizes, CPU times, and the



Table 1. Simulation results.

SPICE2G6 ANNSIS ANNSIS
Without partitioning | With partitioning
Structure | synapses | Fets | Nodes | Memory | Time | Memory Time Memory Time
+opamps k) (sec) &) (sec) k) (sec)
2x1 3 49 148 672 3.6 448 0.8 560 0.8
2x2x1 9 147 | 426 908 13.3 596 2.7 812 1.7
2x3x1 13 213 611 980 19.6 672 43 956 24
2x4x1 17 279 | 796 1040 26.3 748 6.6 1084 3.0
2x5x1 21 345 981 1100 31.9 820 8.8 1208 3.7
2x5x2 27 445 | 1258 1212 49.3 928 14.5 1400 5.1
2x5x3 33 545 1535 * * 1028 20.6 1564 6.3
2x5x4 39 645 1812 * * 1128 26.6 1696 7.0
2x5%5 45 745 | 2089 * * 1264 32.3 1912 8.8
4x8x7 103 1721 | 4766 * * 2136 128.0 3112 19.4

* SPICE2G6 did not converge up to the predefined number of iterations of SPICE.

memory requirements for different structures for
simulations performed on SunSPARC2 workstations.
When the analog neural network circuit was
partitioned, the simulation time decreased remarkably. As
seen in Figures 1 and 2, the simulation time increases
almost linearly for the partitioned case and almost
quadratically for the non-partitioned case. Remarkable
decreases in simulation time show the effectiveness of
partitioning. Thus, it is possible to simulate large neural
network circuits in a faster manner and without any
convergence problems.
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Figure 1. Simulation time for different MLP
structures(without partitioning).

. Neural Network Circuitry

Figure 3 shows the circuit used as a synapse. This
circuit is a modified version of the well known Gilbert
multiplier [12,13]. The inputs are in the form of voltage
differences and are denoted by the couples x, —x, and
¥; —¥,. The output of the original Gilbert multiplier is a
current difference and this difference is converted to a
single ended current (Z) through current mirrors. This
improves the linearity of the multiplier as well as provid-
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Figure 2 Simulation time for different MLLP
structures(with partitioning).

ing easy interfacing to the following circuitry. The output
voltage characteristics of the synapse circuit is shown in

Figure 5.
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Figure 3. Four-quadrant Gitbert multiplier.

Figure 4 shows an OPAMP that can be used to sum
the outputs of all the synapses connected to the neuron
and convert the current sum into voltage. This OPAMP
consists of two stages, where the first stage is a
differential amplifier whose differential current output is
mirrored into the next stage and converted to a single
ended output through circuitry very similar to the synapse



circuit above. A sigmoid generator introduced in [14] is
used after the OPAMP to generate the activation function
for the neuron. This generator is depicted in Figure 6, and
the characteristics are plotted in Figure 7.
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Figure 4. General purpose OPAMP.
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Figure 6. Sigmoid generator.

3. Silicon Assembler

The automatic generation of the analog neural
network layout is possible if there are suitably designed
synapses and neurons. These basic blocks (subcells) can
be placed in arrays and the complete circuit layout will be
obtained. Once the cif (Caltech Intermediate Form) files
for the building blocks are available, the final layout can
be obtained as a cif file by appending that placement
information to the cif definitions of the blocks. As part of
this study, a silicon assembler (SAFANN) is developed to
accomplish this task.

The starting point is the layout for a single cell which
consists of three types of subcells and some inter-
connections. A sample 3-input cell structure is given in
Figure 8. It is mainly made up of 3 multipliers, a neuron,
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Figure 7. Characteristics of the
sigmoid generator.

and 3 of the so called channels. In fact, each channel
consists of 3 subchannels employing 2 lines each. This
type of a topology has its reasons: First of all, the design
has to be modular; that is, it should support any number
of inputs. Hence, the weights for the inputs are carried on
channels whose number can easily be manipulated. It
should also be noticed that only one weight; i.e., 2 weight
lines should be connected to each multiplier, so that a
decoding scheme is necessary. Next, the input lines have
to travel throughout the cell in horizontal direction
because that input will also be required in the next cell
placed to the right of the first one. Finally, the output
lines of the multiplier have to be aligned such that they
are common in vertical direction so that they will be
connected together which is also part of the abutment
property. The supply and bias lines will also run through
the cells for alignment.

SAFANN achieves the automatic placement of the
layout building blocks and routing between them by
placing instances of symbols created for those blocks,
namely the multiplier, neuron and subchannel; and
routing channels as collection of boxes into a cif file. The
structure of this methodology can be easily understood by
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Figure 8. Topology of a single cell with
three inputs.



considering a single layer of an ANN given in Figure 9.
Here, the channels will be described by collection of boxes
representing metal-1, metal-2 lines and vias. Neuron
cells, however will be called by the symbols. Figure 10
presents the layout of a test chip containing 4 neurons
{cell of Figure 8) with 5 inputs for each. This chip is
generated by SAFANN and it contains the building blocks
explained in section 2. The chip is sent to foundry for
fabrication in a 2u technology.
Inputs (outputs of previous layer)
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Weight decoding chcnn]el
poy $ v
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NN N N

Outputs (nputs for the next layer)

Figure 9. Topology of a single layer with
three inputs and four neurons.

5. Training

There are three different approaches to the hardware
implementation of neural networks as explained in the
introduction. The non-learning implementation requires
minimal chip size, whereas, due to the mismatches
between the models and real circuitry, its performance is
the worst one, and the on-chip learning implementation
gives the best performance. However, if the model of real
circuitry perfectly matches the real neural network, the
non-learning implementation will be equivalent to on-
chip training. An almost perfectly matching model can be
the SPICE model of the analog network. Having
developed a tool for simulating analog neural networks
with SPICE models, Madaline Rule III {11] was chosen to
fine tune the weights obtained from the backpropagation
algorithm which uses models for the neurons and
synapses.

Although we developed a method for the simulation of
analog neural networks, it still takes considerable amount
of time to simulate them. Therefore, before starting
Madaline Rule III, an approximate starting point for the
weights should be found. Approximate determination of
weights is done using the modified backpropagation
algorithm, which incorporates the approximate models of
the synapses and neurons. We modeled the synapses as
polynomial functions with errors of less than 1%. The
sigmoids are modeled in a more general form of sigmoid

function, given as f(x)= A+ The model we

1+e(Cx+D) :

“used has a mismatch below 5%.
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Figure 10. Layout of thé test chlp (2x1.fmm‘)

The approximate weights are calculated on a computer
with backpropagation algorithm and these weights are
downloaded to the SPICE representation of the network to
start Madaline Rule III. Madaline Rule III is an algorithm
that is used when the backpropagation algorithm cannot
be applied due to the impossibility of finding the
derivatives of error with respect to the weights. Instead of
using the derivatives, a small amount of disturbance is
added to the summation of the synapse outputs and the
difference in the error is measured. Dividing the error
difference by the disturbance, we find the derivative of the
error with respect to the input of the neuron if the
disturbance is small enough. Then, assuming linear
neurons and using the chain rule, one can find the
derivative of error with respect to the weights. However, if
the neurons are not perfectly linear, this method will not
produce the real derivatives. Another method could be
adding disturbance to the weights and then finding the
derivative with respect to the weights directly. However,
this will increase the simulation time considerably. Thus
another method was devised: assuming that the synapses
are linear again, we applied disturbances to all the
weights, which indeed produces a disturbance at the input
of the neuron. The simulations show that this will
improve the convergence properties of Madaline Rule III.
This method is Madaline Rule III with a minor
modification.



The method is tested on two examples, the classical
XOR problem and a sine function generator. For the XOR
problem, a 2x3x1 structure was used, while a 1x10x1
structure was employed for the sine generator. The
weights are calculated via modified backpropagation
using the models for the synapse and neuron circuits and
the error decreased below 1% for both cases. At this time,
the network was simulated by ANNSIS and the error was
found to be 13% for the XOR example and 30% for the
sine generator example. Figure 11 shows the sine
approximation result of the neural network after modified
backpropagation algorithm. These errors were larger than
the errors estimated by the backpropagation algorithm.
This shows that, even in simple examples, small model
mismatches (less than 5%) can create big problems. After
that we applied Madaline Rule III for 50 epochs and the
error obtained using the simulator decreased below 1% for
the XOR case and below 3% for the sine generator case.
Figure 12 shows the sine function obtained from training
on ANNSyS.
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Figure 11.Neural network approximation of
sine wave after modified backpropagation.

6. Conclusion and Future Work

An Analog Neural Network Synthesis System
(ANNSyS) was developed. This package consists of an
Analog Neural Network Simulation System (ANNSIS), a
Silicon Assembler For Analog Neural Networks
(SAFANN), a function approximator for synapses and
neurons, a modified backpropagation algorithm, and a
circuit level neural network trainer using modified
Madaline Rule III as well as a control shell. ANNGSIS is
based on circuit partitioning techniques and has superior
performance compared to other circuit simulators for
simulating analog neural networks. ANNSyS has been

applied to a number of neural network problems one of

which has been illustrated in this paper and excellent
results have been obtained. As for the future work,
ANNSyS will be applied to real life examples and the
fabricated chip will be tested for performance evaluation.
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